Nghiên cứu khoa học Tổ chức Nghiên cứu thiên văn châu Âu tại Nam Bán cầu

Tìm kiếm hành tinh ngoài hệ Mặt Trời

Một hành tinh ngoại hệ băng đá.

Công cuộc tìm kiếm hành tinh ngoài hệ Mặt Trời là một thành phần quan trọng trong khả năng trả lời về câu hỏi: có sự sống ở đâu đó trong Vũ trụ không? Các đài quan sát ESO được trang bị những thiết bị dùng để tìm kiếm, nghiên cứu và giám sát các thiên thể gọi là 'hành tinh ngoại hệ'. Sử dụng Kính thiên văn rất lớn (VLT), các nhà thiên văn lần đầu tiên thu được ánh sáng mờ từ một hành tinh bên ngoài hệ Mặt Trời và chụp được bức ảnh về nó. Đây là một hành tinh khí khổng lồ, có khối lượng bằng khoảng 5 lần khối lượng Sao Mộc. Quan sát này đã đánh dấu một bước đi quan trọng hướng đến một trong những mục đích quan trọng của thiên văn vật lý hiện đại: phân loại cấu trúc vật lý và thành phần hóa học của các hành tinh khí khổng lồ và thậm chí, các hành tinh đá.[18]

Với thiết bị HARPS, the High Accuracy Radial velocity Planet Searcher, các nhà thiên văn đã khám phá ra không ít hơn bốn hành tinh quay xung quanh một ngôi sao ở gần chúng ta có khối lượng nhỏ hơn cả Sao Thiên Vương (ngôi sao Gliese 581), gồm một hành tinh có khối lượng hai lần khối lượng Trái Đất và một hành tinh có khối lượng gấp bảy lần khối lượng Trái Đất mà nằm ở vùng ở được của ngôi sao. Hành tinh này quay quanh ngôi sao với chu kỳ 66 ngày Trái Đất. Nhiều người nghĩ rằng có thể hành tinh này được bao phủ bởi một đại dương - một thế giới có nước. Kết quả này đánh dấu một kết quả đột phá trong việc tìm kiếm hành tinh có khả năng duy trì sự sống.[19]

Những kính thiên văn khác ở đài quan sát La Silla, sử dụng một kỹ thuật sáng tạo là vi thấu kính hấp dẫn, tham gia vào tìm kiếm hành tinh ngoại hệ trong một mạng lưới toàn cầu các kính thiên văn. Sự hợp tác này đã đem đến kết quả phát hiện ra một hành tinh ngoại hệ có đặc tính khá gần với Trái Đất. Hành tinh này có khối lượng bằng 5 lần khối lượng Trái Đất, quay quanh ngôi sao với chu kỳ 10 năm Trái Đất và có bề mặt gần như là đá hoặc băng.[20]

Xác định tuổi của Vũ trụ

Cụm sao cầu 47 Tu.

Sử dụng kính VLT, người ta đã thực hiện những đo đạc độc nhất đặt nền tảng cho phép xác định một cách độc lập độ tuổi của Vũ trụ. Lần đầu tiên họ đo lượng đồng vị Uranium-238 phóng xạ trong một ngôi sao được sinh ra trong khi Ngân Hà vẫn còn trong giai đoạn đang hình thành.[21]

Giống như phương pháp xác định niên đại bằng đồng vị cacbon, nhưng đối với khoảng thời gian lớn hơn, 'đồng hồ' Uranium này cho phép đo được tuổi của ngôi sao. Kết quả thu được là ngôi sao có độ tuổi 12,5 tỷ năm. Vì ngôi sao không thể già hơn Vũ trụ được, do đó tuổi của Vũ trụ phải lớn hơn giá trị này. Điều này phù hợp với các đo đạc khác (dựa vào bức xạ nền vũ trụ) và những mô hình vũ trụ học, cho độ tuổi Vũ trụ có giá trị bằng 13,7 tỷ năm. Các sao, và thiên hà của chúng ta phải được hình thành từ rất sớm sau Big Bang.[21]

Một kết quả khác đẩy công nghệ trong thiên văn học đến giới hạn hiện nay của nó, và vén lên ánh sáng về thời điểm sớm nhất của dải Ngân Hà. Các nhà thiên văn của ESO cũng lần đầu tiên đo thành phần của berili trong hai ngôi sao thuộc về một cụm sao cầu. Với đo đạc này, họ nghiên cứu pha ban đầu giữa hình thành của những ngôi sao đầu tiên trong Ngân Hà với những cụm sao này. Các nhà thiên văn tìm thấy rằng thế hệ đầu tiên các sao trong dải Ngân Hà phải hình thành ngay sau khi kết thúc "Thời kỳ tối" kéo dài 200 triệu năm sau Big Bang[22].

Lỗ đen tại trung tâm của Ngân Hà

Vùng trung tâm của Ngân Hà.

Cái gì nằm ở trung tâm của Ngân Hà? Trong một thời gian dài, nhiều người cho rằng có một lỗ đen nằm tại tâm của thiên hà chúng ta nhưng không chắc chắn được điều này. Sau 15 năm theo dõi sự di chuyển của các ngôi sao bằng các kính thiên văn ở đài quan sát La Silla Paranal, các nhà khoa học cuối cùng đã thu được chứng cứ cụ thể.

Các sao nằm ở trung tâm Ngân Hà có độ tập trung rất lớn do vậy cần phải có kỹ thuật chụp ảnh đặc biệt như quang học thích nghi để nâng cao độ phân giải của các kính VLT. Các nhà thiên văn đã có thể theo dõi từng ngôi sao với độ chính xác cao khi chúng di chuyển xung quanh trung tâm Ngân Hà[23] Quỹ đạo của chúng cho thấy chúng phải quay quanh một thiên thể có trường hấp dẫn lớn, một lỗ đen siêu khối lượng, với khối lượng khoảng ba triệu lần khối lượng Mặt Trời.[24] Những quan sát từ VLT cũng hé lộ ra những chớp sáng hồng ngoại phát ra từ vùng này với khoảng thời gian đều đặn. Mặc dù nguyên nhân chính xác của hiện tượng này vẫn còn chưa được biết, những nhà quan sát đã đề xuất ra giả thuyết là lỗ đen tại tâm Ngân Hà có thể tự quay với tốc độ lớn. Và cho dù là gì đi nữa, cuộc đời của một lỗ đen không hề yên tĩnh và thanh bình.[25]

Kính thiên văn VLT cũng dùng để thăm dò vào trung tâm của các thiên hà khác[26], và một lần nữa các nhà thiên văn lại tìm thấy sự có mặt của các lỗ đen siêu khối lượng[26]. Trong thiên hà hoạt động NGC 1097, họ nhìn thấy chi tiết chưa từng có về một mạng lưới tổ hợp các sợi xoắn ốc về phía trung tâm của thiên hà này và khả năng cung cấp cho những hình ảnh đầu tiên[27] về quá trình vật chất từ những vùng chính của thiên hà rơi về trung tâm của nó.

Sự bùng phát tia gamma - Một trong những hiện tượng với năng lượng lớn nhất trong Vũ trụ

Sự bùng phát tia gamma (Gamma-Ray Bursts - GRBs) là những sự phát tia gamma năng lượng cao trong thời gian từ vài giây đến một vài phút - hay là một cái chớp mắt trong thang thời gian Vũ trụ. Chúng thường xảy ra ở những khoảng cách lớn từ Trái Đất, ở biên giới của vũ trụ quan sát được.[28]

Kính thiên văn VLT cùng một số đài quan sát trên thế giới đã quan sát thấy ánh sáng muộn của bùng phát tia gamma GRB 090423 có khoảng cách xa nhất từ trước đến nay. Với dịch chuyển đỏ đo được là 8,2 - ánh sáng từ nguồn này mất khoảng 13 tỷ năm để đến được Trái Đất. Do đó nó có thể xảy ra khi Vũ trụ mới chỉ khoảng 600 triệu năm tuổi, hay không nhiều hơn 5% tuổi của Vũ trụ hiện tại. Năng lượng nó giải phóng trong một vài giây gấp khoảng 300 lần năng lượng mà Mặt Trời sẽ phát ra trong toàn bộ thời gian sống của nó, khoảng 10 tỷ năm. GRB do đó là những vụ nổ mạnh nhất trong Vũ trụ từ Big Bang[29].

Các nhà nghiên cứu đã cố gắng khám phá bản chất của những vụ nổ này trong một thời gian dài. Các quan sát chỉ ra GRB có hai kiểu - thời gian ngắn (ngắn hơn một vài giây), và thời gian dài - từ đó người ta nghi ngờ có hai kiểu sự kiện liên quan đến chúng. Năm 2003, nhờ các kính của ESO các nhà thiên văn đã liên kết những vụ bùng phát tia gamma thời gian dài với những vụ nổ của những sao khối lượng lớn, gọi là 'hypernovae'. Theo dõi vụ nổ này trong vòng một tháng, họ chỉ ra rằng ánh sáng có tính chất tương tự như ánh sáng thoát ra từ một supernova, được phát ra từ một ngôi sao khối lượng lớn nổ tung ở cuối đời của nó[30]. Năm 2005, lần đầu tiên các kính thiên văn của ESO đã thu được ánh sáng khả kiến sau một vụ bùng phát thời gian ngắn. Bằng cách theo dõi ánh sáng này trong ba tuần, các nhà thiên văn chỉ ra rằng những bùng phát thời gian ngắn - không như các bùng phát thời gian dài - có nguồn gốc khác với hypernova. Thay vào đó, người ta cho rằng nó là kết quả của sự sáp nhập các sao neutron hoặc các lỗ đen[31]. Việc quan sát ánh sáng muộn của chớp tia gamma cũng được phối hợp giữa VLT và Atacama Pathfinder Experiment (APEX) để tăng cường khả năng phát hiện và ghi lại dữ liệu ở bước sóng dưới milimét[32].

Dữ liệu khoa học và Vũ trụ kĩ thuật số

Dữ liệu khoa học

Lưu trữ dữ liệu khoa học.

Nhóm hoạt động lưu trữ khoa học (Science Archive Operation Group) nhận và tái phân phối dữ liệu dữ liệu của ESO và HST và cung cấp hỗ trợ cho người sử dụng các dữ liệu. Khoảng 12 terabytes (TB) dữ liệu công cộng được phân phối trong 1 năm thông qua kho lưu trữ của ESO, tới khoảng 10.000 website yêu cầu dữ liệu. Ngoài ra, hơn 2.000 đĩa CDDVD dữ liệu độc quyền được gửi đi hàng năm tới những người đứng đầu một dự án nghiên cứu quan sát trong giai đoạn phân tích dữ liệu. Hiện tại tổng dữ liệu lưu trữ khoảng 65 TB, với tốc độ dữ liệu được lưu hàng năm là 15 TB. Con số này sẽ tăng gấp 10 lần khi Kính thiên văn khảo sát hồng ngoại và khả kiến (VISTA) tạo ra khoảng 150 TB mỗi năm.[33]

Vũ trụ kĩ thuật số

Những đột phá trong công nghệ kính thiên văn, máy dò và máy tính cho phép những dự án khảo sát thiên văn tạo ra một lượng lớn các hình ảnh, phổ và catalô. Những mảng dữ liệu này bao trùm toàn bộ bầu trời ở tất cả các bước sóng từ tia gamma, tia X tới bước sóng khả kiếnhồng ngoại, và sóng vô tuyến. Các nhà thiên văn học đang phát triển cách làm việc khoa học mới, bằng cách biến một dữ liệu khoa học khổng lồ trở thành một 'vũ trụ kĩ thuật số' dễ dàng truy nhập được. Những kĩ thuật này sử dụng một mạng lưới tính toán phân tán với khả năng truy nhập dữ liệu đơn giản, trong suốt qua những 'đài quan sát ảo'.Như một đài quan sát thật với những kính thiên văn, mỗi kính trang bị những thiết bị thiên văn, một đài quan sát ảo chứa các dữ liệu trung tâm, được phát triển trên toàn thế giới dưới sự điều hành của Liên minh quốc tế đài quan sát ảo (IVOA)[34] và sự án EURO-VO của châu Âu[35].

Những đài quan sát ảo đã chứng minh sự hiệu quả nó, như nhờ nó mà người ta đã phát hiện ra 31 quasar bị che khuất, mờ từ dữ liệu của dự án Great Observatories Origins Deep Survey (GOODS), làm số lượng quasar được tìm thấy tăng gấp bốn lần. Sự phát hiện cũng có nghĩa là việc khảo sát các lỗ đen siêu khối lượng cho kết quả số lượng chúng thấp so với thực tế ít nhất hai lần, và có thể số lượng các lỗ đen siêu khối lượng phải gấp bốn hoặc năm lần so với kết quả khảo sát của GOODS[36].